Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.575
Filtrar
1.
Cells ; 11(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35053354

RESUMEN

Neutrophils are the most abundant innate immune cells in the circulation and they are the first cells recruited to sites of infection or inflammation. Almost half of the intracellular protein content in neutrophils consists of S100A8 and S100A9, though there has been controversy about their actual localization. Once released extracellularly, these proteins are thought to act as damage-associated molecular patterns (DAMPs), though their mechanism of action is not well understood. These S100 proteins mainly form heterodimers (S100A8/A9, also known as calprotectin) and this heterocomplex is recognized as a useful biomarker for several inflammatory diseases. We observed that S100A8/A9 is highly present in the cytoplasmic fraction of neutrophils and is not part of the granule content. Furthermore, we found that S100A8/A9 was not released in parallel with granular content but upon the formation of neutrophil extracellular traps (NETs). Accordingly, neutrophils of patients with chronic granulomatous disease, who are deficient in phorbol 12-myristate 13-acetate (PMA)-induced NETosis, did not release S100A8/A9 upon PMA stimulation. Moreover, we purified S100A8/A9 from the cytoplasmic fraction of neutrophils and found that S100A8/A9 could induce neutrophil activation, including adhesion and CD11b upregulation, indicating that this DAMP might amplify neutrophil activation.


Asunto(s)
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Trampas Extracelulares/metabolismo , Activación Neutrófila , Degranulación de la Célula , Citoplasma/metabolismo , Exocitosis , Humanos , Neutrófilos/metabolismo , Neutrófilos/ultraestructura
2.
Int J Lab Hematol ; 43(6): 1309-1318, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34523805

RESUMEN

INTRODUCTION: Developing prognostic markers can be useful for clinical decision-making. Peripheral blood (PB) examination is simple and basic that can be performed in any facility. We aimed to investigate whether PB examination can predict prognosis in coronavirus disease (COVID-19). METHODS: Complete blood count (CBC) and PB cell morphology were examined in 38 healthy controls (HCs) and 40 patients with COVID-19. Patients with COVID-19, including 26 mild and 14 severe cases, were hospitalized in Juntendo University Hospital (Tokyo, Japan) between April 1 and August 6, 2020. PB examinations were performed using Sysmex XN-3000 automated hematology analyzer and Sysmex DI-60 employing the convolutional neural network-based automatic image-recognition system. RESULTS: Compared with mild cases, severe cases showed a significantly higher incidence of anemia, lymphopenia, and leukocytosis (P < .001). Granular lymphocyte counts were normal or higher in mild cases and persistently decreased in fatal cases. Temporary increase in granular lymphocytes was associated with survival of patients with severe infection. Red cell distribution width was significantly higher in severe cases than in mild cases (P < .001). Neutrophil dysplasia was consistently observed in COVID-19 cases, but not in HCs. Levels of giant neutrophils and toxic granulation/Döhle bodies were increased in severe cases. CONCLUSION: Basic PB examination can be useful to predict the prognosis of COVID-19, by detecting SARS-CoV-2 infection-induced multi-lineage changes in blood cell counts and morphological anomalies. These changes were dynamically correlated with disease severity and may be associated with disruption of hematopoiesis and the immunological system due to bone marrow stress in severe infection.


Asunto(s)
Recuento de Células Sanguíneas , COVID-19/sangre , Leucocitosis/etiología , Linfocitos/ultraestructura , Linfopenia/etiología , Neutrófilos/ultraestructura , SARS-CoV-2 , Anciano , Anemia/sangre , Anemia/etiología , Recuento de Células Sanguíneas/instrumentación , Recuento de Células Sanguíneas/métodos , COVID-19/mortalidad , Forma de la Célula , Gránulos Citoplasmáticos/ultraestructura , Índices de Eritrocitos , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Leucocitosis/sangre , Recuento de Linfocitos , Linfopenia/sangre , Masculino , Persona de Mediana Edad , Redes Neurales de la Computación , Pronóstico , Índice de Severidad de la Enfermedad
3.
J Leukoc Biol ; 110(4): 629-649, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34085299

RESUMEN

Despite the important function of neutrophils in the eradication of infections and induction of inflammation, the molecular mechanisms regulating the activation and termination of the neutrophil immune response is not well understood. Here, the function of the small GTPase from the RGK family, Gem, is characterized as a negative regulator of the NADPH oxidase through autophagy regulation. Gem knockout (Gem KO) neutrophils show increased NADPH oxidase activation and increased production of extracellular and intracellular reactive oxygen species (ROS). Enhanced ROS production in Gem KO neutrophils was associated with increased NADPH oxidase complex-assembly as determined by quantitative super-resolution microscopy, but normal exocytosis of gelatinase and azurophilic granules. Gem-deficiency was associated with increased basal autophagosomes and autolysosome numbers but decreased autophagic flux under phorbol ester-induced conditions. Neutrophil stimulation triggered the localization of the NADPH oxidase subunits p22phox and p47phox at LC3-positive structures suggesting that the assembled NADPH oxidase complex is recruited to autophagosomes, which was significantly increased in Gem KO neutrophils. Prevention of new autophagosome formation by treatment with SAR405 increased ROS production while induction of autophagy by Torin-1 decreased ROS production in Gem KO neutrophils, and also in wild-type neutrophils, suggesting that macroautophagy contributes to the termination of NADPH oxidase activity. Autophagy inhibition decreased NETs formation independently of enhanced ROS production. NETs production, which was significantly increased in Gem-deficient neutrophils, was decreased by inhibition of both autophagy and calmodulin, a known GEM interactor. Intracellular ROS production was increased in Gem KO neutrophils challenged with live Gram-negative bacteria Pseudomonas aeruginosa or Salmonella Typhimurium, but phagocytosis was not affected in Gem-deficient cells. In vivo analysis in a model of Salmonella Typhimurium infection indicates that Gem-deficiency provides a genetic advantage manifested as a moderate increased in survival to infections. Altogether, the data suggest that Gem-deficiency leads to the enhancement of the neutrophil innate immune response by increasing NADPH oxidase assembly and NETs production and that macroautophagy differentially regulates ROS and NETs in neutrophils.


Asunto(s)
Trampas Extracelulares/metabolismo , Macroautofagia , Proteínas de Unión al GTP Monoméricas/metabolismo , NADPH Oxidasas/metabolismo , Animales , Autofagosomas/metabolismo , Autofagosomas/ultraestructura , Calmodulina/metabolismo , Modelos Animales de Enfermedad , Espacio Intracelular/metabolismo , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al GTP Monoméricas/deficiencia , Activación Neutrófila , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Pseudomonas aeruginosa/fisiología , Especies Reactivas de Oxígeno/metabolismo , Salmonelosis Animal/microbiología , Salmonelosis Animal/patología , Salmonella typhimurium/fisiología
4.
Endocrinology ; 162(7)2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33959755

RESUMEN

Cholesterol has been implicated in the clinical progression of breast cancer, a disease that continues to be the most commonly diagnosed cancer in women. Previous work has identified the cholesterol metabolite 27-hydroxycholesterol (27HC) as a major mediator of the effects of cholesterol on breast tumor growth and progression. 27HC can act as an estrogen receptor (ER) modulator to promote the growth of ERα+ tumors, and as a liver X receptor (LXR) ligand in myeloid immune cells to establish an immune-suppressive program. In fact, the metastatic properties of 27HC require the presence of myeloid cells with neutrophils (polymorphonuclear neutrophils; PMNs) being essential for the increase in lung metastasis in murine models. In an effort to further elucidate the mechanisms by which 27HC alters breast cancer progression, we made the striking finding that 27HC promoted the secretion of extracellular vesicles (EVs), a diverse assortment of membrane bound particles that includes exosomes. The resulting EVs had a size distribution that was skewed slightly larger than EVs generated by treating cells with vehicle. The increase in EV secretion and size was consistent across 3 different subtypes: primary murine PMNs, RAW264.7 monocytic cells, and 4T1 murine mammary cancer cells. Label-free analysis of 27HC-EVs indicated that they had a different metabolite composition to those from vehicle-treated cells. Importantly, 27HC-EVs from primary PMNs promoted tumor growth and metastasis in 2 different syngeneic models, demonstrating the potential role of 27HC-induced EVs in the progression of breast cancer. EVs from PMNs were taken up by cancer cells, macrophages, and PMNs, but not T cells. Since EVs did not alter proliferation of cancer cells, it is likely that their protumor effects are mediated through interactions with myeloid cells. Interestingly, RNA-seq analysis of tumors from 27HC-EV-treated mice do not display significantly altered transcriptomes, suggesting that the effects of 27HC-EVs occur early on in tumor establishment and growth. Future work will be required to elucidate the mechanisms by which 27HC increases EV secretion, and how these EVs promote breast cancer progression. Collectively, however, our data indicate that EV secretion and content can be regulated by a cholesterol metabolite, which may have detrimental effects in terms of disease progression, important findings given the prevalence of both breast cancer and hypercholesterolemia.


Asunto(s)
Hidroxicolesteroles/farmacología , Neoplasias Mamarias Experimentales/patología , Animales , Línea Celular Tumoral , Progresión de la Enfermedad , Moduladores de los Receptores de Estrógeno/farmacología , Vesículas Extracelulares/patología , Vesículas Extracelulares/fisiología , Femenino , Hipercolesterolemia/complicaciones , Ratones , Metástasis de la Neoplasia/patología , Trasplante de Neoplasias , Neutrófilos/fisiología , Neutrófilos/ultraestructura , Células RAW 264.7
5.
Exp Cell Res ; 402(2): 112577, 2021 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-33811902

RESUMEN

Cellular heterogeneity and diversity are recognized to contribute to the functions of neutrophils under homeostatic and pathological conditions. We previously suggested that the chronic inflammatory responses associated with hypertension (HTN) are related to the participation of different subpopulations of neutrophils. Two populations of neutrophils can be obtained by density gradient centrifugation: normal-density neutrophils (NDN) and low-density neutrophils (LDN). However, the lack of standardized functional protocols has limited phenotypic characterization and functional comparisons of LDN and NDN. Based on their capability to incorporate Na+, maturity and activation stage, we characterized NDN and LDN in blood samples from ten patients with HTN and ten healthy individuals (HI) using flow cytometry. We compared the levels of reactive oxygen species (ROS), generation of neutrophil extracellular traps (NETs) and levels of apoptosis in NDN and LDN. In general, the NDN and LDN subpopulations from patients with HTN exhibited higher levels of sodium influx and ROS, and lower levels of apoptosis than the corresponding NDN and LDN subsets from HI. Transmission electron microscopy revealed NDN and LDN from patients with HTN exhibited alterations to mitochondrial morphology and fewer cytoplasmic granules than the corresponding HI subpopulations. Our results indicate both the NDN and LDN subpopulations enhance the effects of inflammation that contribute to the pathophysiology of HTN. Further detailed studies are required to characterize the events during ontogeny of the myeloid lineage that result in the diverse phenotypic characteristics of each subpopulation of LDN and NDN.


Asunto(s)
Heterogeneidad Genética , Inflamación/sangre , Neutrófilos/ultraestructura , Hipertensión Arterial Pulmonar/sangre , Adulto , Apoptosis/genética , Trampas Extracelulares/genética , Citometría de Flujo , Humanos , Inflamación/patología , Masculino , Neutrófilos/metabolismo , Neutrófilos/patología , Hipertensión Arterial Pulmonar/patología , Especies Reactivas de Oxígeno/metabolismo
6.
Cells ; 10(1)2021 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-33440601

RESUMEN

This study evaluated the role of endogenous and exogenous annexin A1 (AnxA1) in the activation of the NLRP3 inflammasome in isolated peritoneal neutrophils. C57BL/6 wild-type (WT) and AnxA1 knockout mice (AnxA1-/-) received 0.3% carrageenan intraperitoneally and, after 3 h, the peritoneal exudate was collected. WT and AnxA1-/- neutrophils were then stimulated with lipopolysaccharide, followed by the NLRP3 agonists nigericin or ATP. To determine the exogenous effect of AnxA1, the neutrophils were pretreated with the AnxA1-derived peptide Ac2-26 followed by the NLRP3 agonists. Ac2-26 administration reduced NLRP3-derived IL-1ß production by WT neutrophils after nigericin and ATP stimulation. However, IL-1ß release was impaired in AnxA1-/- neutrophils stimulated by both agonists, and there was no further impairment in IL-1ß release with Ac2-26 treatment before stimulation. Despite this, ATP- and nigericin-stimulated AnxA1-/- neutrophils had increased levels of cleaved caspase-1. The lipidomics of supernatants from nigericin-stimulated WT and AnxA1-/- neutrophils showed potential lipid biomarkers of cell stress and activation, including specific sphingolipids and glycerophospholipids. AnxA1 peptidomimetic treatment also increased the concentration of phosphatidylserines and oxidized phosphocholines, which are lipid biomarkers related to the inflammatory resolution pathway. Together, our results indicate that exogenous AnxA1 negatively regulates NLRP3-derived IL-1ß production by neutrophils, while endogenous AnxA1 is required for the activation of the NLRP3 machinery.


Asunto(s)
Anexina A1/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Neutrófilos/metabolismo , Animales , Inflamasomas/ultraestructura , Interleucina-1beta/metabolismo , Lípidos/química , Masculino , Ratones Endogámicos C57BL , Activación Neutrófila , Neutrófilos/ultraestructura
7.
J Leukoc Biol ; 109(4): 793-806, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-32946637

RESUMEN

Extracellular vesicles (EVs) are important elements of intercellular communication. A plethora of different, occasionally even opposite, physiologic and pathologic effects have been attributed to these vesicles in the last decade. A direct comparison of individual observations is however hampered by the significant differences in the way of elicitation, collection, handling, and storage of the investigated vesicles. In the current work, we carried out a careful comparative study on 3, previously characterized types of EVs produced by neutrophilic granulocytes. We investigated in parallel the modulation of multiple blood-related cells and functions by medium-sized vesicles. We show that EVs released from resting neutrophils exert anti-inflammatory action by reducing production of reactive oxygen species (ROS) and cytokine release from neutrophils. In contrast, vesicles generated upon encounter of neutrophils with opsonized particles rather promote proinflammatory processes as they increase production of ROS and cytokine secretion from neutrophils and activate endothelial cells. EVs released from apoptosing cells were mainly active in promoting coagulation. We thus propose that EVs are "custom made," acquiring selective capacities depending on environmental factors prevailing at the time of their biogenesis.


Asunto(s)
Vesículas Extracelulares/metabolismo , Inflamación/patología , Neutrófilos/metabolismo , Adulto , Coagulación Sanguínea , Vesículas Extracelulares/ultraestructura , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Interleucina-8/metabolismo , Masculino , Neutrófilos/ultraestructura , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Adulto Joven
8.
Eur J Clin Invest ; 51(1): e13443, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33131070

RESUMEN

BACKGROUND: To reveal detailed histopathological changes, virus distributions, immunologic properties and multi-omic features caused by SARS-CoV-2 in the explanted lungs from the world's first successful lung transplantation of a COVID-19 patient. MATERIALS AND METHODS: A total of 36 samples were collected from the lungs. Histopathological features and virus distribution were observed by optical microscope and transmission electron microscope (TEM). Immune cells were detected by flow cytometry and immunohistochemistry. Transcriptome and proteome approaches were used to investigate main biological processes involved in COVID-19-associated pulmonary fibrosis. RESULTS: The histopathological changes of the lung tissues were characterized by extensive pulmonary interstitial fibrosis and haemorrhage. Viral particles were observed in the cytoplasm of macrophages. CD3+ CD4- T cells, neutrophils, NK cells, γ/δ T cells and monocytes, but not B cells, were abundant in the lungs. Higher levels of proinflammatory cytokines iNOS, IL-1ß and IL-6 were in the area of mild fibrosis. Multi-omics analyses revealed a total of 126 out of 20,356 significant different transcription and 114 out of 8,493 protein expression in lung samples with mild and severe fibrosis, most of which were related to fibrosis and inflammation. CONCLUSIONS: Our results provide novel insight that the significant neutrophil/ CD3+ CD4- T cell/ macrophage activation leads to cytokine storm and severe fibrosis in the lungs of COVID-19 patient and may contribute to a better understanding of COVID-19 pathogenesis.


Asunto(s)
COVID-19/patología , Hemorragia/patología , Trasplante de Pulmón , Pulmón/patología , Ganglios Linfáticos/patología , Fibrosis Pulmonar/patología , Linfocitos B/patología , Linfocitos B/ultraestructura , Linfocitos B/virología , COVID-19/genética , COVID-19/metabolismo , COVID-19/cirugía , Cromatografía Liquida , Citometría de Flujo , Perfilación de la Expresión Génica , Humanos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Células Asesinas Naturales/patología , Células Asesinas Naturales/ultraestructura , Células Asesinas Naturales/virología , Pulmón/metabolismo , Pulmón/ultraestructura , Pulmón/virología , Ganglios Linfáticos/metabolismo , Ganglios Linfáticos/ultraestructura , Ganglios Linfáticos/virología , Macrófagos Alveolares/patología , Macrófagos Alveolares/ultraestructura , Macrófagos Alveolares/virología , Masculino , Persona de Mediana Edad , Monocitos/patología , Monocitos/ultraestructura , Monocitos/virología , Neutrófilos/patología , Neutrófilos/ultraestructura , Neutrófilos/virología , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteómica , Fibrosis Pulmonar/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/cirugía , RNA-Seq , SARS-CoV-2 , Índice de Severidad de la Enfermedad , Linfocitos T/patología , Linfocitos T/ultraestructura , Linfocitos T/virología , Espectrometría de Masas en Tándem
9.
Exp Parasitol ; 220: 108034, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33188795

RESUMEN

Eimeria ninakohlyakimovae represents a highly pathogenic coccidian parasite causing severe haemorrhagic typhlocolitis in goat kids worldwide. NETosis was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites in vitro and in vivo. In vitro interactions of caprine PMN with parasitic stages of E. ninakohlyakimovae (i. e. oocysts and sporozoites) as well as soluble oocyst antigens (SOA) were analyzed at different ratios, concentrations and time spans. Extracellular DNA staining was used to illustrate classical molecules induced during caprine NETosis [i. e. histones (H3) and neutrophil elastase (NE)] via antibody-based immunofluorescence analyses. Functional inhibitor treatments with DPI and DNase I were applied to unveil role of NADPH oxidase (NOX) and characterize DNA-backbone composition of E. ninakohlyakimovae-triggered caprine NETosis. Scanning electron microscopy (SEM)- and immunofluorescence-analyses demonstrated that caprine PMN underwent NETosis upon contact with sporozoites and oocysts of E. ninakohlyakimovae, ensnaring filaments which firmly entrapped parasites. Detailed co-localization studies of E. ninakohlyakimovae-induced caprine NETosis revealed presence of PMN-derived DNA being adorned with nuclear H3 and NE corroborating molecular characteristics of NETosis. E. ninakohlyakoimovae-induced caprine NETosis was found to be NOX-independent since DPI inhibition led to a slight decrease of NETosis. Exposure of caprine PMN to vital E. ninakohlyakimovae sporozoites as well as SOA resulted in up-regulation of IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in stimulated PMN. Since vital E. ninakohlyakimovae-sporozoites induced caprine NETosis, this effective entrapment mechanism might reduce initial sporozoite epithelial host cell invasion during goat coccidiosis ultimately resulting in less macromeront formation and reduced merozoites I production.


Asunto(s)
Coccidiosis/veterinaria , Citocinas/genética , Eimeria/inmunología , Enfermedades de las Cabras/parasitología , Neutrófilos/parasitología , Análisis de Varianza , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Coccidiosis/inmunología , Coccidiosis/parasitología , Colitis/parasitología , Colitis/veterinaria , Citocinas/metabolismo , Eimeria/genética , Eimeria/ultraestructura , Hemorragia Gastrointestinal/parasitología , Hemorragia Gastrointestinal/veterinaria , Enfermedades de las Cabras/inmunología , Cabras , Interleucina-12/genética , Interleucina-12/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Microscopía Electrónica de Rastreo/veterinaria , NADPH Oxidasas/metabolismo , Neutrófilos/inmunología , Neutrófilos/ultraestructura , Óxido Nítrico Sintasa de Tipo II/genética , Óxido Nítrico Sintasa de Tipo II/metabolismo , Oocistos/genética , Oocistos/inmunología , Reacción en Cadena de la Polimerasa/veterinaria , Esporozoítos/genética , Esporozoítos/inmunología , Transcripción Genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo , Tiflitis/parasitología , Tiflitis/veterinaria , Regulación hacia Arriba
11.
J Exp Med ; 218(3)2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33275138

RESUMEN

Rolling neutrophils form tethers with submicron diameters. Here, we report that these tethers detach, forming elongated neutrophil-derived structures (ENDS) in the vessel lumen. We studied ENDS formation in mice and humans in vitro and in vivo. ENDS do not contain mitochondria, endoplasmic reticulum, or DNA, but are enriched for S100A8, S100A9, and 57 other proteins. Within hours of formation, ENDS round up, and some of them begin to present phosphatidylserine on their surface (detected by annexin-5 binding) and release S100A8-S100A9 complex, a damage-associated molecular pattern protein that is a known biomarker of neutrophilic inflammation. ENDS appear in blood plasma of mice upon induction of septic shock. Compared with healthy donors, ENDS are 10-100-fold elevated in blood plasma of septic patients. Unlike neutrophil-derived extracellular vesicles, most ENDS are negative for the tetraspanins CD9, CD63, and CD81. We conclude that ENDS are a new class of bloodborne submicron particles with a formation mechanism linked to neutrophil rolling on the vessel wall.


Asunto(s)
Micropartículas Derivadas de Células/patología , Neutrófilos/patología , Sepsis/sangre , Sepsis/patología , Animales , Micropartículas Derivadas de Células/ultraestructura , Humanos , Ratones Endogámicos C57BL , Neutrófilos/ultraestructura , Proteoma/metabolismo , Proteínas S100/metabolismo
12.
Methods Mol Biol ; 2233: 193-202, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33222136

RESUMEN

Neutrophils are short-lived cells after isolation. The analysis of neutrophil vesicular trafficking requires rapid and gentle handling. Recently developed super-resolution microscopy technologies have generated unparalleled opportunities to help understand the molecular mechanisms regulating neutrophil vesicular trafficking, exocytosis, and associated functions at the molecular level. Here, we describe super-resolution and total internal reflection fluorescence (TIRF) microscopy approaches for the analysis of vesicular trafficking and associated functions of primary neutrophils.


Asunto(s)
Exocitosis/genética , Microscopía Fluorescente/métodos , Neutrófilos/ultraestructura , Cultivo Primario de Células/métodos , Movimiento Celular/genética , Humanos , Neutrófilos/metabolismo , Transporte de Proteínas/genética , Proteínas de Unión al GTP rab/genética
13.
J Allergy Clin Immunol ; 147(6): 2381-2385.e2, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33279574

RESUMEN

BACKGROUND: SMARCD2 (SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily D, member 2) has recently been shown to have a critical role in granulopoiesis in humans, mice, and zebrafish. Our patient presented with delayed cord separation, failure to thrive, and sepsis. Retrospective whole-exome sequencing confirmed a homozygous splice-site mutation in SMARCD2. OBJECTIVE: We sought to provide the second description of human SMARCD2 deficiency and the first functional analysis of human primary SMARCD2-deficient cells. METHODS: Heparinized venous blood and bone marrow were collected from the patient after obtaining informed consent. Patient leukocytes and CD34+ cells were then isolated, phenotyped, and assessed functionally. RESULTS: Circulating neutrophils appeared phenotypically immature, lacking multilobed nuclei, and neutrophil granules lacked lactoferrin but showed normal levels of myeloperoxidase. Neutrophil oxidative burst was preserved in response to phorbol 12-myristate 13-acetate. Patient bone marrow-derived neutrophils and white blood cells showed a severely impaired chemotactic response. Furthermore, white blood cells showed defective in vitro killing of Staphylococcus aureus, consistent with a specific granule deficiency. Finally, patient bone marrow-derived CD34+ cells showed markedly impaired in vitro expansion and differentiation toward the neutrophil lineage. Before her molecular diagnosis, our patient underwent hematopoietic stem cell transplantation and is well 8 years later. CONCLUSIONS: This report highlights an important role for SMARCD2 in human myelopoiesis and the curative effect of hematopoietic stem cell transplantation for the hematopoietic features of SMARCD2 deficiency.


Asunto(s)
Diferenciación Celular/genética , Proteínas Cromosómicas no Histona/genética , Homocigoto , Lactoferrina/deficiencia , Trastornos Leucocíticos/etiología , Mutación , Neutrófilos/metabolismo , Sitios de Empalme de ARN , Biomarcadores , Diferenciación Celular/inmunología , Quimiotaxis de Leucocito/genética , Quimiotaxis de Leucocito/inmunología , Citotoxicidad Inmunológica , Femenino , Predisposición Genética a la Enfermedad , Humanos , Inmunofenotipificación , Recién Nacido , Trastornos Leucocíticos/diagnóstico , NADPH Oxidasas/metabolismo , Neutrófilos/patología , Neutrófilos/ultraestructura , Linaje , Fenotipo , Estallido Respiratorio/genética , Estallido Respiratorio/inmunología
14.
Front Immunol ; 11: 565545, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262756

RESUMEN

Polymorphonuclear neutrophils (PMN) are critical for first line innate immune defence against Staphylococcus aureus. Mature circulating PMN maintain a short half-life ending in constitutive apoptotic cell death. This makes them unlikely candidates as a bacterial intracellular niche. However, there is significant evidence to suggest that S. aureus can survive intracellularly within PMN and this contributes to persistence and dissemination during infection. The precise mechanism by which S. aureus parasitizes these cells remains to be established. Herein we propose a novel mechanism by which S. aureus subverts both autophagy and apoptosis in PMN in order to maintain an intracellular survival niche during infection. Intracellular survival of S. aureus within primary human PMN was associated with an accumulation of the autophagic flux markers LC3-II and p62, while inhibition of the autophagy pathway led to a significant reduction in intracellular survival of bacteria. This intracellular survival of S. aureus was coupled with a delay in neutrophil apoptosis as well as increased expression of several anti-apoptotic factors. Importantly, blocking autophagy in infected PMN partially restored levels of apoptosis to that of uninfected PMN, suggesting a connection between the autophagic and apoptotic pathways during intracellular survival. These results provide a novel mechanism for S. aureus intracellular survival and suggest that S. aureus may be subverting crosstalk between the autophagic and apoptosis pathways in order to maintain an intracellular niche within human PMN.


Asunto(s)
Apoptosis , Autofagia , Neutrófilos/microbiología , Staphylococcus aureus , Humanos , Microscopía Electrónica de Transmisión , Neutrófilos/ultraestructura , Staphylococcus aureus/ultraestructura
15.
Front Immunol ; 11: 1928, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32983120

RESUMEN

The glycans on the plasma membrane of cells manifest as the glycocalyx, which serves as an information-rich frontier that is directly in contact with its immediate milieu. The glycoconjugates (GCs) that adorn most of the mammalian cells are also abundant in gametes, especially the spermatozoa where they perform unique reproduction-specific functions e.g., inter-cellular recognition and communication. This study aimed to implicate the sperm glycosylation pattern as one of the factors responsible for low conception rates observed in buffalo bulls. We hypothesized that a differential abundance of glycans exists on the spermatozoa from bulls of contrasting fertilizing abilities endowing them with differential immune evasion abilities. Therefore, we investigated the role of glycan abundance in the phagocytosis and NETosis rates exhibited by female neutrophils (PMNs) upon exposure to such spermatozoa. Our results indicated that the spermatozoa from high fertile (HF) bulls possessed a higher abundance of O-linked glycans e.g., galactosyl (ß-1,3)N-acetylgalactosamine and N-linked glycans like [GlcNAc]1-3, N-acetylglucosamine than the low fertile (LF) bull spermatozoa. This differential glycomic endowment appeared to affect the spermiophagy and NETosis rates exhibited by the female neutrophil cells (PMNs). The mean percentage of phagocytizing PMNs was significantly different (P < 0.0001) for HF and LF bulls, 28.44 and 59.59%, respectively. Furthermore, any introduced perturbations in the inherent sperm glycan arrangements promoted phagocytosis by PMNs. For example, after in vitro capacitation the mean phagocytosis rate (MPR) rate in spermatozoa from HF bulls significantly increased to 66.49% (P < 0.01). Likewise, the MPR increased to 70.63% (p < 0.01) after O-glycosidase & α2-3,6,8,9 Neuraminidase A treatment of spermatozoa from HF bulls. Moreover, the percentage of PMNs forming neutrophil extracellular traps (NETs) was significantly higher, 41.47% when exposed to spermatozoa from LF bulls vis-à-vis the spermatozoa from HF bulls, 15.46% (P < 0.0001). This is a pioneer report specifically demonstrating the role of O-linked glycans in the immune responses mounted against spermatozoa. Nevertheless, further studies are warranted to provide the measures to diagnose the sub-fertile phenotype thus preventing the losses incurred by incorrect selection of morphologically normal sperm in the AI/IVF reproduction techniques.


Asunto(s)
Búfalos , Fertilidad , Glicocálix/inmunología , Evasión Inmune , Neutrófilos/inmunología , Fagocitosis , Polisacáridos/inmunología , Selección Genética , Espermatozoides/inmunología , Animales , Trampas Extracelulares/inmunología , Trampas Extracelulares/metabolismo , Glicocálix/metabolismo , Glicosilación , Masculino , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Polisacáridos/metabolismo , Espermatozoides/metabolismo , Espermatozoides/ultraestructura
16.
Nat Immunol ; 21(11): 1444-1455, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32958928

RESUMEN

Acquisition of a lipid-laden phenotype by immune cells has been defined in infectious diseases and atherosclerosis but remains largely uncharacterized in cancer. Here, in breast cancer models, we found that neutrophils are induced to accumulate neutral lipids upon interaction with resident mesenchymal cells in the premetastatic lung. Lung mesenchymal cells elicit this process through repressing the adipose triglyceride lipase (ATGL) activity in neutrophils in prostaglandin E2-dependent and -independent manners. In vivo, neutrophil-specific deletion of genes encoding ATGL or ATGL inhibitory factors altered neutrophil lipid profiles and breast tumor lung metastasis in mice. Mechanistically, lipids stored in lung neutrophils are transported to metastatic tumor cells through a macropinocytosis-lysosome pathway, endowing tumor cells with augmented survival and proliferative capacities. Pharmacological inhibition of macropinocytosis significantly reduced metastatic colonization by breast tumor cells in vivo. Collectively, our work reveals that neutrophils serve as an energy reservoir to fuel breast cancer lung metastasis.


Asunto(s)
Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Metabolismo de los Lípidos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Células Madre Mesenquimatosas/metabolismo , Neutrófilos/metabolismo , Animales , Biomarcadores , Proliferación Celular , Progresión de la Enfermedad , Endocitosis , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Metástasis de la Neoplasia , Neutrófilos/ultraestructura
17.
J Perinat Med ; 48(9): 985-994, 2020 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-32739908

RESUMEN

An issue of the novel coronavirus infection spreading is currently in the first place among others in the list of the international medical community. Due to lack of information, conflicting research findings, multicomponent effect of the virus on the body host, as well as various consequences that the virus triggers in the body, now every medical specialty does study the viral attack pathogenesis. Recent months showed that vascular complications are the most severe in the Coronavirus Disease 2019 (COVID-19) and are the main cause of death in the patients. The mechanisms of vascular complications are complex and affect both the hemostatic system and immune responses, "inflammatory storm", disorders of the renin-angiotensin-aldosterone system, endotheliopathy, etc. Due to the leading role of vascular complications in the viral infection pathogenesis, several groups of patients are at extra risk, including pregnant women, patients with a burdened obstetric history, with hereditary thrombophilia and antiphospholipid syndrome, and patients after in vitro fertilization (IVF). In this category of pregnant women, use of low-molecular-weight heparins (LMWH) is particularly important for both prevention of vascular and obstetric complications, and for pathogenetic therapy of COVID-19.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/complicaciones , Trampas Extracelulares/fisiología , Neutrófilos/ultraestructura , Neumonía Viral/complicaciones , Complicaciones Infecciosas del Embarazo/virología , Enfermedades Vasculares/virología , Enzima Convertidora de Angiotensina 2 , COVID-19 , Comorbilidad , Infecciones por Coronavirus/tratamiento farmacológico , Infecciones por Coronavirus/epidemiología , Parto Obstétrico/métodos , Femenino , Heparina de Bajo-Peso-Molecular/uso terapéutico , Humanos , Pulmón/virología , Pandemias , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/epidemiología , Embarazo , Complicaciones Infecciosas del Embarazo/tratamiento farmacológico , Complicaciones Infecciosas del Embarazo/fisiopatología , Factores de Riesgo , SARS-CoV-2 , Enfermedades Vasculares/epidemiología , Enfermedades Vasculares/prevención & control
19.
Part Fibre Toxicol ; 17(1): 20, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32498698

RESUMEN

BACKGROUND: Talc, a hydrous magnesium silicate, often used for genital hygiene purposes, is associated with ovarian carcinoma in case-control studies. Its potential to cause inflammation, injury, and functional changes in cells has been described. A complication of such studies is that talc preparations may be contaminated with other materials. A previous study by (Beck et al. Toxicol Appl Pharmacol 87:222-34, 1987) used a hamster model to study talc and granite dust exposure effects on various biochemical and cellular inflammatory markers. Our current study accessed key materials used in that 1987 study; we re-analyzed the original talc dust with contemporary scanning electron microscopy and energy dispersive x-ray analysis (SEM/EDX) for contaminants. We also examined the original bronchoalveolar lavage (BAL) cells with polarized light microscopy to quantify cell-associated birefringent particles to gain insight into the talc used. RESULTS: SEM/EDX analyses showed that asbestos fibers, quartz, and toxic metal particulates were below the limits of detection in the original talc powder. However, fibers with aspect ratios ≥3:1 accounted for 22% of instilled material, mostly as fibrous talc. Talc (based on Mg/Si atomic weight % ratio) was the most abundant chemical signature, and magnesium silicates with various other elements made up the remainder. BAL cell counts confirmed the presence of acute inflammation, which followed intratracheal instillation. Measurements of cell associated birefringent particles phagocytosis revealed significant differences among talc, granite, and control exposures with high initial uptake of talc compared to granite, but over the 14-day experiment, talc phagocytosis by lavaged cells was significantly less than that of granite. Phagocytosis of talc fibers by macrophages was observed, and birefringent particles were found in macrophages, neutrophils, and multinucleate giant cells in lavaged cells from talc-exposed animals. CONCLUSION: Our data support the contention that talc, even without asbestos and other known toxic contaminants, may elicit inflammation and contribute to lung disease. Our findings support the conclusions of (Beck et al. Toxicol Appl Pharmacol 87:222-34, 1987) study. By analyzing particulate exposures with polarized light microscopy and SEM/EDX, fibrous talc was identified and a distinctive pattern of impaired particulate ingestion was demonstrated.


Asunto(s)
Exposición por Inhalación/efectos adversos , Pulmón/efectos de los fármacos , Macrófagos/efectos de los fármacos , Silicatos de Magnesio/toxicidad , Neutrófilos/efectos de los fármacos , Talco/toxicidad , Animales , Líquido del Lavado Bronquioalveolar/química , Líquido del Lavado Bronquioalveolar/citología , Células Cultivadas , Cricetinae , Polvo , Exposición por Inhalación/análisis , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Macrófagos/ultraestructura , Silicatos de Magnesio/química , Silicatos de Magnesio/farmacocinética , Masculino , Microscopía Electrónica de Rastreo , Neutrófilos/metabolismo , Neutrófilos/ultraestructura , Tamaño de la Partícula , Cuarzo/química , Cuarzo/farmacocinética , Cuarzo/toxicidad , Dióxido de Silicio/química , Dióxido de Silicio/farmacocinética , Dióxido de Silicio/toxicidad , Espectrometría por Rayos X , Propiedades de Superficie , Talco/química , Talco/farmacocinética
20.
Biochem Biophys Res Commun ; 527(3): 646-653, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32423806

RESUMEN

Neutrophil extracellular trap (NET) is one of the first-line defenses against microbes. Under certain circumstances, however, it also plays an aggravating factor in diverse inflammation-related diseases including cancers and vascular diseases. Our aim is to develop a new method to detect NET in cells and tissues using a DNA-specific fluorescence probe CDr15. CDr15 was characterized to be impermeable to the cell membranes and to emit a strong fluorescence in association with extracellular DNAs in NET. Due to these properties, CDr15 was successfully shown to quantify NETs in vitro and to be applicable for real-time monitoring NET formation in PMA-stimulated neutrophils. Even in formaldehyde-fixed tumor specimens, CDr15 could detect NETs spreading around cancer cells. Compared with DAPI and SYTOX DNA dyes, CDr15 showed a lower level of background fluorescence and a higher specificity in NET detection. Based on these results, we propose CDr15 as a novel marker of NET to be applicable in experimental and clinical studies.


Asunto(s)
ADN/análisis , Trampas Extracelulares/química , Colorantes Fluorescentes/análisis , Neutrófilos/ultraestructura , Células Cultivadas , Humanos , Microscopía Fluorescente , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...